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Abstract— Basic aspects of a newly suggested theory of intelligent composite structures are for-
mulated and discussed. Governing equations describing the behavior of an elastic composite struc-
ture incorporating sensors and actuators are developed, and the basic optimization problems are
formulated. The theory is illustrated by three examples of a practical interest, which illustrate three
major sources of control for an intelligent structure, namely, residual stresses, material properties,
and geometry of the structure. In the first example, the optimal residual strain in an actnator which
provides the minimal deflection of a cantilevered beam is derived. The second example is concerned
with the optimal control of a Winkler foundation rigidity in the problem of vibrations damping for
a simply supported beam under dynamic loading. In the third example, for a given residual strain,
the optimal length of the actuator that minimizes the beam deflection is obtained, and the dependence
of the optimal length on the intensity of residual strain is calculated. Copyright © 1996 Elsevier
Science Ltd.

1. INTRODUCTION

In order to formulate the problems in the theory of intelligent structures, we begin with a
brief discussion of some relevant aspects of the optimal control theory.

Problems in optimal control and optimal design of flexible structures attracted increas-
ing attention in the past two decades. Despite a large number of applications, investigations
were concerned mainly with the dynamics and control of robots, see e.g., Brady et al.
(1983), Dagli and Kusiak (1985), Khorasani (1992), and aerospace structures, see €.g.,
Anthony and Wie (1990), Balas (1979), Bar-Kana er al. (1983), Meirovitch (1990), Sharon
(1992).

The following two basic types of control can be distinguished: (i) passive control
with the use of auxiliary non-adaptable elastic springs, viscoelastic dampers, and dynamic
absorbers, see e.g., Nashif er al. (1985); and (ii) active control, when the undesirable
oscillations are counteracted by auxiliary adaptable mechanisms, for example electro-
magnetic, electromechanical, electrorheological, pneumatical actuators, or actuators using
the shape memory effect, see, e.g., Cho and Heirick (1985), Gandhi and Thompson (1989),
Kojima et al. (1986), Rogers (1992), Rogers and Wallace (1994), Tani (1992).

As a rule, passive control systems do not require special equipment for measurements,
whereas active control systems contain sensors as a necessary part.

Under an intelligent composite structure we mean a structure with sensors and actu-
ators which is actively controlled, and which performs a required motion that is optimal in
a class of admissible motions.

Comparing this definition with the definition of an active optimal control system, we
can see that they are pretty close. One could expect that the theories of active control and
intelligent structures should be quite similar. However, there are two important differences
between them. The theory of active control systems draws attention to constructing optimal
control, it deals with analytical and numerical methods of optimization, and it is concerned
with presently existing technical devices and materials.

As distinguished from that, the newly suggested theory of intelligent structures deals
mainly with the ultimate features of structures and it is concerned with optimal design of
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controllable systems, where controllers ensure minima of some cost functionals. It is
assumed in the framework of this theory that all the materials and devices with required
properties can be designed and fabricated (either now or in the future), while the objective
of the theory is to determine limiting properties of a structure which incorporates these
(either real or hypothetical) materials and devices.

The theory of intelligent structures may employ mathematical methods similar to the
methods of the optimal control theory, but it is essentially focused on the dependence of
the cost functional on the system parameters and on the optimal design of a system which
provides the optimal (with respect to a cost functional) properties of an active control. For
example, in the simplest problem of active damping of vibrations of a cantilevered beam,
see e.g., Lee et al. (1989), Su and Tadjbakhsh (1991), the problem of optimal control is to
find the signals applied to actuators which minimize the deflection, whereas the problem in
the theory of intelligent structures is to choose the properties of actuators and their
distribution that ensure the minimal deflection under assumption that all the actuators
work in their optimal regimes.

In order to estimate structures in progress, it is important from the engineering stand-
point to predict their ultimate (limiting) features bearing in mind that any changes in
properties (in an appropriate range) of the main material of a structure, as well as of sensors
and actuators, are admissible. This allows us to decide whether properties of the presently
existing materials and devices are sufficient for the structure, or new materials and equip-
ments are required for the project.

The exposition is as follows: in Section 2, we derive the governing equations for an
intelligent structure which incorporates an elastic solid, sensors, and actuators, and we
formulate optimization problems. Sections 3—5 are concerned with the analysis of applied
examples which illustrate three basic classes of optimization problems. In Section 3, we
deal with a static problem of optimization for a cantilevered beam under the action of a
transverse force applied to the free end. Section 4 is concerned with the dynamic problem
of vibration damping for a simply supported beam lying on a Winkler foundation with
controllable material properties. In Section 5, we consider the bending of a simply supported
beam with an actuator under a static load.

2. FORMULATION OF GOVERNING EQUATIONS AND OPTIMIZATION PROBLEMS

Let us consider an inhomogeneous intelligent structure consisting of an elastic solid
and a set of sensors and actuators. Generally, both the main solid and auxiliary devices are
assumed to be made of composite materials. The structure is in its natural state and occupies
a connected domain Q with a piece-wise smooth boundary I'. At the initial moment ¢ = 0,
external forces are applied to the body. The load consists of body forces B and surface
tractions b. The surface forces & are applied to a part ', of the boundary I'. The other part
of the boundary, I', = I'\I',, is assumed to be fixed.

Points of Q refer to coordinates x = {x,}, i = 1,2, 3. Denote by u(, x) the displacement
vector and

e(t, x) = [ Vu(t, x) + V' (1, )] (1

the infinitesimal sirain tensor, where V is the gradient operator, and 7 stands for transpose.
The stress tensor, g, satisfies the equation of motion

62
;?zV'o’-{-pB )

where p is the mass density, and the dot denotes the inner product.

Equations (1) and (2) should be fulfilled both for controllable (with the use of actu-
ators), and for uncontrollable motions. The constitutive equations depend essentially on
the presence (or absence) of sensors and actuators.
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In the absence of actuators, we treat the material as anisotropic elastic composite.
Accordingly, the stress ¢,, can be expressed in terms of the strains ¢ by generalized Hooke’s
law

o, =C(x)"e. 3)

Here Cis a fourth-rank tensor of elastic moduli, see e.g., Kalamkarov (1992). To take into
account the presence of sensors and a structure of the composite material, we assume that
the main material is inhomogeneous which is modeled by the dependence C = C(x).

In the presence of actuators, the material is modeled as a two-phase blend of the main
material (3) and distributed actuators. The latter means that the number of actuators is
rather large, and we can assume that in any small (in the sense of continuous mechanics)
domain with volume V, the actuators occupy a subdomain with volume V. Dividing V, by
V we define volume density of actuators #,. As usual in mechanics of blends, we suppose
that the volume density coincides with the surface density.

We treat actuators also as anisotropic composite elastic solids with tensor of elastic
moduli C,(x). Similarly to eqn (3) we write

0q = CA(X) ) (8_ 611)5 (4)

where ¢, is the tensor of residual strains in actuators produced under the action of control
signals.

The total stress in the material equals the sum of stresses in the main material and the
actuators

6 =(1—n,)o,,+n,0,. %)
Substitution of expression (3) and (4) into eqn (5) yield
g = [(1—”a)C+naCa]'S—Haca.ga' (6)

Equation (6) demonstrates three sources of control for an intelligent composite struc-
ture. First, we can choose the tensor ¢, as a function of time ¢ and spatial coordinates x;,
whereas other parameters are prescribed. In this case the material characteristics do not
change, and the motion is controlled only by residual strains in actuators. This kind of
control occurs, for example, when electrical signals are applied to piezoelectric elastic
actuators, see e.g., Lee and Moon (1989, 1990), Tzou and Gadre (1989), or when thermal
loads are applied to shape memory alloys, see e.g., Rogers (1992).

Second, we can choose the tensor C, as a function of time ¢ and spatial coordinates x;,
whereas other parameters remain prescribed. From the physical standpoint, this means
that we vary only elastic properties of material, without changing other characteristics.
This kind of control occurs in electro-mechanical systems where some sub-systems are
turned on and off under the action of electric signal, or in merely mechanical systems
in physical fields (temperature, humidity, radiation, etc.), as well as in structures with
electrorheological actuators, see e.g., Gandhi and Thompson (1989).

Third, we can choose parameter 7, as a function of spatial coordinates x;, whereas other
parameters are prescribed. Thisimplies the problem of optimal design for a deformable solid
with actuators. Unlike the standard problems of optimal design, we seek here not a shape
of the body, but optimal (in some sense) spatial distribution of actuators.

Evidently, these sources of control can be combined. As a result, we formulate the basic
problem in the theory of intelligent structures: to find optimal mechanical properties of the
main composite material and optimal spatial distribution of sensors and actuators which
ensure (under the optimal control of the motion by actuators with the use of information
from sensors) the required performance.
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The theory can be generalized by accounting for the nonlinear response of both the
main material and actuators. The above three major sources of control: residual stresses,
material properties, and geometry, remain unchanged.

For given control parameters, eqns (1), (2), and (6) together with the boundary
conditions

u|r“:05 ”'0'|rh=b M

determine the behavior of an intelligent composite structure. The problem consists in
establishing such control parameters which provide an optimal performance in a class of
admissible motions.

As usual in the theory of optimal control, we should formulate (i) a class of admissible
motions; (ii) a functional which determines the optimal properties ; and (iii) an information
which is available to construct the control.

The first and the second issues are more or less standard, and we employ in our study
the same restrictions, and the same functionals as those used in the optimal control theory
for oscillations in elastic systems, see e.g., Tzafestas (1982).

The third issue is much more interesting. Two different cases should be distinguished.
In the first case, external forces and the material properties are assumed to be known.
Optimal control is assumed to be a function of time and spatial coordinates, and is not
related to observations at all. Some engineering problems of this type are studied later in
the present paper.

In the other case, external loads are not known precisely, and optimal control is
constructed as a function of observing parameters (sensors’ data). It is assumed that several
sensors are installed in the structure, and control is formed as a response to their signals.
Here an additional class of optimization problems arises: to determine the necessary
number of sensors and their optimal location. Moreover, as a rule, information of sensors
is incomplete, and it contains random errors. In systems with sensors and actuators,
transmission of signals from sensors to actuators, as well as inertia of actuators, cause a
delay in control which can lead to the system instability, see e.g., Drozdov and Kolmanovskii
(1994). We suggest using viscoelastic materials to prevent the instability caused by the
delays in information and response, as well as by random errors in observations. The
problems of optimal design of sensors under conditions of uncertainty, and the stability
analysis for intelligent viscoelastic structures will be the subject of our future study.

3. OPTIMAL DESIGN OF RESIDUAL STRAINS

Let us consider a cantilevered beam with length / and rectangular cross-section of a
unit width. The beam consists of two perfectly bonded layers, see Fig. 1. The upper layer
is made of a linear elastic material. It has thickness 4 and the Young modulus £. The lower
layer is made of a piezoelectric elastic material with thickness /4, and the Young modulus
E,. The subscript @ means that the lower layer is employed as an actuator. We assume that
electric potentials applied to the actuator surfaces produce a residual strain ¢, in the lower

Fig. 1. An intelligent, cantilevered beam with an actuator.
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layer. This strain depends only on time, ¢, = ¢,(¢), and it can be controlled to provide an
optimal conduct of the whole structure.

Structures consisting of two (or more) linked layers where one of the layers is employed
as an actuator, were considered in a number of investigations, see e.g., Bailey and Hubbard
(1985), Barbone and Braga (1992), Lee and Moon (1989), Lee er al. (1989), Natori et al.
(1988), Qiu et al. (1994) Tzou and Gadre (1989). These intelligent structures are used in
precision optic elements and machine parts such as reflectors and guidelines, where even
small bending deformations caused by external forces or variations of temperature can
have significant influence on their performance.

The governing equations for composite plates and shells with some active layers were
derived, e.g., by Lee and Moon (1989, 1990), Lee et al. (1989), Tzou and Gadre (1989).
These equations are rather complicated due to their generality. For our needs, we deduce
the governing equations for a structure shown in Fig. 1 independently.

Introduce coordinates x and y directed as shown in Fig. 1. Axis x coincides with the
interface between the upper and lower layers. Denote by u(x) the displacement in x direction,
and by w(x) the beam deflection on the interface.

We assume that (i) the beam displacements are small, and the nonlinear terms in the
expressions for the curvature can be neglected ; (ii) the hypothesis regarding plane sections
at bending holds. The non-zero components u, and u, of the displacement field are calculated
as follows:

U, = u(x)+ywl(x)’ U, = —W()C), (8)

where prime denotes the differentiation with respect to x.
According to eqn (8), the only non-zero component of the strain tensor equals

Eax = U (X) +yw"(x). 9

Neglecting the Poisson’s effect, we assume that the only non-zero component of the
stress tensor is o,,. The stress o, is related to the strain ¢,, by Hooke’s law, cf. eqns (3) and

4,

O = Ety, in upper layer.

0. = E(e,x—¢,) inlowerlayer. (10)
Substitution of expression (9) into eqn (10) yields
O = E(u/ +yw") O<y<h,

Oxx = Ea(u/+yW”Q8a) (~ a < y< 0) (11)

Let us substitute expression (11) into the formula for the longitudinal force

After simple algebra we obtain
N =(Eh+ Eh ) +3(ER* — E,h2)w" — E, he,. (12)

It follows from the equilibrium equations that N = 0. This equality together with expression
(12) implies that
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1 1 2 2
P - - . 1
W = g i, oot —3ER — B (13)

We now substitute expression (11) into the formula for the bending moment

h
M= J 0y dy

—h,

a

and find
M = YEW — E,h2)u +XER® + E,h))w" +3E b €,

Substitution of expression (13) into this equality yields

- - 1 2 242 2700,
M= S Eh T E) {EE hh,(h+h.)e,+[(ER* — E,h)? +4EE hh,(h+h,)* 1w}, (14)

For ¢, = 0, and A, = 0, eqn (14) implies the well-known formula

M—Eh3 ,
=7 ""

Let us suppose now that a time-independent transverse force P is applied to the free
end of the cantilevered beam. It follows from the equilibrium equations that

M(x) = P(I—Xx).

Substitution of expression (14) into this equality yields

Aw" = P(l—x) — Bs,, (15)
where
o _ ER —E )’ +4EEh (h+h)* o EEh,(h+h,) a6)
B 12(Eh+ E k) © T 2(Eh+ELh,)

Integrating eqn (15) with boundary conditions
w(0) =0, w'(0) =0,

we obtain

w(x) = % [P(l— ;)—Beajl, W(x) = ng [2(PI— Be,)— Px]. 17)

Let us consider the following optimization problem: find such a value ¢,. of strain ,,
which minimizes the maximal deflection of the beam

orgcvvé ! fw(x)l

To solve this problem we first fix ¢, and calculate max,|w(x)| for this strain, and afterwards,
minimize the obtained value with respect to e,.
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Point ¢ where function w(x) reaches extremum, either is located at the free end, & =/,
or coincides with a root x, of the derivative w’(x). It follows from eqn (17) that

Xy = %(Pl—Baa). (18)

Evidently, we are interested in the roots which belong to the interval (0,/). This together
with formula (18) yields

<< —. (19)

For other values of strain ¢,, the maximal deflection takes place at the free end of the beam,
and, according to eqn (17), it equals |w(})| = G(e,), where

PP
G, (Sa) = ég

3Bg,
2Pl

1 ) (20)

Suppose that inequality (19) holds. Substitution of expression (18) into eqn (17) implies
that |w(x)| = G,(¢e,), where

2PP Be,\?
Gs (&) =3—A(1— P,) . 1)

Plots of functions G,(¢,) and G,(g,) are presented in Fig. 2.
Evidently, the minimal deflection equals the minimum of function
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Fig. 2. Dependences G (¢,) (unfilled circles) and G,(g,) (filled circles). Function G(g,) = max {G,(g,),
G,(g,)} reaches its minimal value at point &,



4418 A. D. Drozdov and A. L. Kalamkarov

G(e,) = max{G (e,), Gilen)}
This minimum is reached at point ¢, which coincides with the root of the equation
G, (ga) = GZ ('ga)y (22)

located in the interval [P//2B, Pl/B]. Substitution of expressions (20) and (21) into eqn (22)
yields

3B, Be,\?
2p1 " _2<1‘ Pl)‘

Introducing the notation ¢, = (PI/B)z, we can rewrite this equation as follows:
3z—-2 =4(1—2)>. (23)

The numerical calculation shows that the only root of eqn (23) within the interval [%, 1]
equals 0.702. Hence the optimal strain in the actuator, which minimizes the beam deflection
can be calculated according to the formula

Pl PUEh+E,h,)
c= 07020 = 1.404 2T Zela)
b = 0902 5 = L A0 o )

The maximal deflection of the beam equals

3

Pl
max [w(x)| = 0.018~A—. (24)

Expression (24) allows us to predict the limiting properties of the actuator. It follows
from eqn (17) that in the absence of control, ¢, = 0, the maximal deflection of the beam
equals

3

max lw(x)| = 0.5%. (295)

Comparison of expressions (24) and (25) shows that the optimal control of the actuator
allows the maximal deflection to be reduced by 28.3 times.

Let us now generalize the above problem and consider the beam under the action of
an arbitrary distributed transverse load with a moment u(x) > 0. In this case, eqn (15) can
be presented as follows.

Aw”(x) = u(x) — Be,. (26)

Introduce the notations

0 0

M) = ru(é) & Myx) = J e—Ou()de.

Similarly to eqn (17) we find from eqn (26)
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w(x) = %[Mz (x) ~%B£ax2], wix) = ;li[M1 (x) — Bex). (27)

It follows from eqn (27) that for any ¢, > 0, function |w(x)| has only one point of minimum
x4(g,) which coincides with the root of the equation

F =M (xy) — Be,xy =0, (28)

which belongs to the interval (0,/). By repeating the above calculations, we obtain the
following equation for determining the optimal strain ¢, in the actuator:

F =M, (xy) — M, () +3 Be (P —x3) = 0. (29)

The strain ¢, is found numerically from eqn (29). Afterwards, substitution of the obtained
value into eqn (27) implies an expression for the optimal deflection of the beam.

It 1s of interest to analyze robustness of the above algorithm. For this purpose, we
assume that

u(x) = P(l—=x)+ni(x),
where fi(x) is a bounded function, and # is a small parameter. In this case,

M = P 1= 3ot Mo =55 (1=5 e, Go)

where M (x) and M,(x) are continuous functions bounded on [0, /]. We seek solutions of
eqns (28) and (29) in the form of the Taylor series

X =2 Hnxs) + o g =6 e+ (31

Substitution of expressions (31) into eqns (28) and (29) implies that

F(xQ,e0,0) =0, F,(x,e",0)=0, (32)
and
774 it 7>4 7773
a;ﬁx;l)+ Fio_
00Xy oe, on
(33)
0F , " 0F , M 0F,
Xk + & = T T
OX de, on

where the derivatives are calculated at the point (x%’, &, 0).

Equations (32) yield solution (18) to the optimization problem for a cantilevered beam
under the action of a transverse force P applied to the free end. By using this solution, we
find from eqns (33)

e = 1_29 M. (34)
P2 x2

It follows from eqn (18) that xi’ = 2/(1 —z). Substitution of this expression into eqn (34)
implies that
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2 / 2l(1—2)
el = m {J (- i)ﬂ(f)df*J‘ [2(1 —2)—<&Jad) dCV}- (35)
- - 0 0

Let us assume that
1 7
Ho = 7J a(g)dg (36)
0

is fixed. It is easy to show that under condition (36) the right-hand side of eqn (35) reaches
maximum for

A(S) = Aold(E—21(1—2)+0), (37

where d(x) is the Dirac delta-function. In this case, the first integral in eqn (35) is maximal,
and the second integral vanishes. Substitution of expression (37) into eqn (35) yields

o 2 _ 49503,
“ T B[1+2(1—2)] B

(38)

Formula (38) serves to evaluate the effect of imperfections and uncertainties in external
loads on the optimal residual strain. For example, it implies that the growth of B leads to
the decrease of the effect of imperfections.

4. OPTIMAL DESIGN OF MATERIAL PROPERTIES

Let us consider a simply supported elastic beam lying on an intelligent, Winkler elastic
foundation. The beam has length /, cross-sectional area S, moment of inertia /, and mass
density p. These parameters are assumed to be independent of the longitudinal coordinate
x.

At instant ¢t = 0, a distributed transverse load g(x) is applied to the beam. Under the
standard assumptions of the technical theory of bending, the beam deflection, w(z, x), obeys
the following equation:

otw o

(020 + BT (1, x) +9(t x) — g(x) = 0 (39)
or ox*

pS

with the boundary conditions

2 o
W 0)+w(t]) =0, —(£,0) = = (1,1) = 0, (40)
x? ox?
and the initial conditions
ow
w(0,2) =0, = (0,2) = 0. (41)

Here g(z, x) 1s the foundation response at point x at moment ¢.
We assume that this response is controllable due to changes in the foundation rigidity.
Namely, we assume that

g(t,8) = c(t)w(t, x). (42)

Here ¢(z) is a piece-wise continuous function taking its values from the interval
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¢ < c(f) <y, (43)

where ¢; and ¢, are given positive constants, ¢, < ¢».

From the engineering point of view, such a foundation can be designed as a Winkler
foundation including two kinds of springs. The springs of the first kind are non-controllable,
their deposit to the total rigidity is characterized by term ¢,. The springs of the other kind
are controllable. They can be “turned on” and “turned off ” by a control electrical signal.
When the signal is absent all these springs are turned off, and no additional response arises
in the foundation. When the signal is present, some springs are turned on, and their number
is proportional to the signal intensity. The maximal response means that all these springs
work, and their contribution into the total rigidity increases its value up to ¢,.

Substitution of expressions (42) and (43) into eqn (39) yields

o’w *w
o +EI ot +cow =gq. (44)

pS

Let wy, be the characteristic deflection of the beam. Introduce the dimensionless variable
and parameters

w X t
We =—, Xg=—, 4=
Wo /

ql* el oS*

_ LA e
Elw,” " EI’ ° EI

dx

In this notation eqn (44) can be written as follows (for simplicity asterisks are omitted) :

0w 0w

y + E +z(w = g. 45)

Our objective is to find the optimal control of the foundation rigidity z°(z), which
minimizes the maximal deflection of the beam

0 SBAK oy WU 0] = min, (46)

and which satisfies the restrictions

ol o,
E=Zl<z(1)<22=%- (47)
We confine ourselves to a particular case when
q = qo Sinmx (48)

The general case is studied by employing a similar reasoning, but more cumbersome
calculations are needed, since solutions of eqn (45) would be expended in series with
respect to eigenfunctions of operator ¢*/0x* with boundary conditions (40), and appropriate
transformations would be accomplished for any term of the expansion.

For load (48), it is natural to seek the solution of eqn (45) in the form

w(t, x) = W(f)sinnx, (49)

where W(¢) is a function to be found. It is easy to show that function (49) satisfies the
boundary conditions (40).
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Substitution of expressions (48) and (49) into eqn (45) yields

2

W 4
ar +[7* +z()] W (1) = gq,. (50)

Introduce the new control Z =(z—z,)/(z*+z,). According to eqn (47), the function
Z(1) satisfies the inequality

Z,—2)

4+Zl

0<Z(Z)<Zl = (51)

]

Substituting expression for the function Z into eqn (50), we find

2

d-w 4
S )1+ ZOIWO = g (52)

Setting

- 1 N
W:#W, [:fil,
nt+z, V2,

we can rewrite eqn (52) as follows ( for simplicity tildes are omitted) :

2

w
I ZOW = 1. (53)

The initial conditions for eqn (53) have the form
dw
w(0) =0, W(O) = 0. (54)

According to eqn (46), the problem of optimization consists in determining a function Z°(¢)
which fulfills restriction (51) and minimizes the functional

max [W(t)| - nél(lrgl (55)

0sr<

Functional (55) is not strictly differentiable, and finding its minimum is not a simple
problem. In order to bypass this difficulty we suggest to consider another problem with a
sufficiently smooth functional, namely, the problem of minimizing the functional

O(Z) = J ! W™ (1) dt, (56)

0

where T is a positive parameter, and m is a positive even integer. As is well-known, for T —
oo and m — o0, the solution of problem (56) tends (in a weak sense) to a solution of
problem (55). Since the most important question for us is the minimal value of functional
(55), this type of convergence is sufficient for our analysis.

Let us fix a perturbation AZ of the function Z and calculate the perturbation of the
functional ® caused by AZ. It follows from eqn (56) that



Intelligent composite structures 4423

AD =m JT Wi H (AW, (1) de, (57)

where functions AW, and AW, satisfy the equations which follows from eqn (53)

dAw AW
5 L= AW, d 5 2= —(1+2) AW, —W,AZ, (58)

with the initial conditions
AW, (0) =0, AW,(0)=0. (59)

Introduce dual variables ¥, and i, that satisfy the differential equations

dwl . m—1 dl/’Z _
dl —(1+aw2+mW1 3 d[ —l//] (60)
with the boundary conditions
Yi(T)y=0, ¥,(T)=0. (61)

We multiply the first equality (58) by (—,), the other equality (58) by v, and add to the
functional (57). As a result we obtain

AD = JT {mW’{’“(t)AWl -y, (% —AWZ)—Hﬂz[(% +(1+2)AW, + WxAZﬂ} dr

Integrating by parts and using the boundary conditions (59), (61) and eqns (60) we find

AD = JTwz(t) Wi ()AZ(t) dt. (62)

0

Expression (62) together with the gradient method of minimization, see ¢.g., Polak
(1971), allows the following iterative procedure to be applied for seeking the minimum. At
the nth step of the iterative process we derive a control Z™(¢). By using this control, we
integrate eqn (53) and find W{’(¢) = W™ (). By employing this function we integrate eqn
(60) and obtain the function ¢’ (7). Afterwards, we choose a positive constant o and
construct a new control

Zl: Zn(t)—alpn(t) > Zl:
ZO () =4Z, (O —a¥, (), 0<Z,)—a¥, () < Z,, (63)
0, Z,(H—aW,(1) <0,

where ¥, = y{" W{”. We calculate the value of the functional ®(Z"+"Y). If this value is
smaller than ®(Z™), we treat the control Z”*+" as a new control and proceed calculations
at the next step of iterations. If ®(Z"*1) > ®(Z™), we reduce « value twice and repeat
the calculations of Z"*". According to eqn (62), after some iterations the inequality
O(Z Dy < O(Z™) will be fulfilled.

By using this algorithm, we calculate the control Z(¢) = Z™(f) which depends on four
parameters: N, the number of iterations; T, the length of time interval ; m, the parameter
of exponent ; and Z,, the limitation on the control. Only the latter parameter has a physical
meaning, the others were introduced to perform the numerical procedure.
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Fig. 3. The ratio n of the maximal deflection for a controllable beam to the maximal deflection for
an uncontrollable beam vs the limitation { on the controllable rigidity of the foundation.

To study the influence of these parameters on the optimal control, we carry out
numerical simulation of the algorithm. The results of numerical analysis show that for
N = 80, neither the final control Z, nor the final value of the functional ® depend on the
number of iterations. Thus, setting N = 80, we can exclude this parameter from our
consideration.

For T > 2, the dependence of the functional ® on T becomes extremely feeble. For
example, for m = 2 and Z, = 1, the minimal value of ® equals 0.978 for 7' = 2, 1.035 for
T =12 and 1.059 for T = 20. This means that we can set 7' = 20 and treat this value as the
numerical “infinity”’. The dimensionless parameter 7 determines time in units which equal
the maximal period of natural oscillations for an appropriate elastic beam without foun-
dation. The above calculation shows that it suffices to control the foundation rigidity
only on the interval of time which equals twenty periods of natural oscillations for the
corresponding non-controllable elastic beam.

The dependence of the functional ® on the parameter m is also very weak. For example,
for T= 12 and Z, = 1, the minimal value of ® equals 1.035 for m = 2, 4 and 6. Therefore,
we can set m = 6 and fix this value in numerical simulations.

After excluding these technical parameters, our attention is drawn to the dependence
of max, o/ W(#)| on restriction Z,. The dependence of the dimensionless parameter

mangolW(mzl:z

n=——
max, ;o IW(t)lzlzo

on { is essential, and it is plotted in Fig. 3. The results show that the parameter # decreases
monotonously in { and reaches its minimal value for { ~ 8. This leads to two important
conclusions: (i) by using the optimal control of the intelligent foundation rigidity we can
reduce the maximal deflection of the beam by about & times (4], _/nl;-s = 8.3); (ii) to
achieve the maximal effect of damping, it is not necessary to increase the foundation rigidity
ad infinity, it is sufficient to increase the initial rigidity by only 8 times with the same
efficiency.
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1/2

Fig. 4. An intelligent, simply supported beam with an actuator.

It is of interest to study what kind of control ensures the miminum of the maximal
deflection. The numerical results show that optimal control Z° is a piece-wise constant
function with two switch points. First, the foundation rigidity takes its maximal admissible
value Z;. Close to the moment #, when the beam deflection is maximal, the optimal rigidity
becomes minimal, and remains minimal during practically the whole return movement of
the beam. Close to moment ¢, when the beam deflection is maximal and directed oppositely
to the foundation, the rigidity becomes maximal again, and keeps this value without changes
until the end of the process.

5. OPTIMIZATION OF GEOMETRY OF AN INTELLIGENT STRUCTURE

Let us consider a simply supported elastic beam with the length / linked with an
actuator. The actuator is modeled as an elastic beam with length 2a, which is perfectly
bonded to the beam and is located symmetrically with respect to the beam center, see Fig.
4.

At instant 7 = 0, distributed transverse load with a constant intensity g is applied to
the beam, and an electrical signal is transmitted to the piezoelectrical actuator. This signal
produces a residual compressive strain g, in the actuator. The beam deforms under the
action of external load and actuator’s compression. The bending moment M relates to the
beam deflection w through the expression

I dZW 1
Adxz’ 0<x<§—a,
dw / /
M:<Ad7—Bga, §—a<x<§+a, (64)
e
/
Ad_z_}t —+a <x<|,
L dx?’ 2

where parameters 4 and B are determined by eqn (16). The sign of the right-hand side of
eqn (64) differs from the sign in the right-hand side of eqn (14) because we treat here the
compressive residual strain ¢, as positive.

The equilibrium equation is written as follows:

M
=q. 65
e (65)

Integration of eqn (65) with the boundary conditions M(0) = M(/) = 0 implies that
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M) = J G(x, ¢ = — Lxtt—). (66)

where

f(’{—l) £ < x,

G(x,¢) = } (67)
x(% — l> Ex>x

is the Green function for an appropriate boundary problem.
Substitution of expression (64) into eqn (66) yields

—ix(l—x), O<x<£—-a £+a<xsl
d*w 24 2 72 ’
a2 |1 ! !
dx Z[Bga_ %x(l_x):l’ 5 —da S X <‘2' +a.

Integration of these equations with the boundary conditions w(0) = w(/) = 0 yields

1 ({/2)+a !
W) = [Bsa J G(x, £)de %J G OEI-) dé:I- (68)
(

1i2y—a 0

Calculating the integrals in eqn (68) we obtain

1
Ww(x) = — | L x(l—x)(P +Ix—x*)— Be,¥(x) |, (69)
Al 24
where
[ I
ax, 0<x< 5 —a,
W =4 (L =a) | foa<x<ls
(x)—ﬁ2 x({—x)— yTa)l b yTasx<j+a
/
a(l—x), §+a<x<l
Introduce the dimensionless variables
X _a B 24Bc¢,
Xx = I’ a*—l’ &y = P .
In the new notation, eqn (69) can be written in the form:
g’ 2
w(x) = 27— [y (= X ) (1 4 x5 — X35) — &0n Vi (x4, (70)

244

where
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Fig. 5. The optimal dimensionless length of the actuator a5 vs the dimensionless residual strain e,4.

Ay X, 0 < xy <%—a*,

1 1 1
Y(xy) = E[X*(Z—X*)— (%_a*)z]s 3T A% S Xy S5+ 0y,

as(l—xy), ay<xe <1

The optimization problem is formulated as follows : for a given intensity of the residual
strain ¢,, find parameter aj which minimizes the maximal deflection

Jmax |w(x)| — min, (71)

and which satisfies the natural restriction 0 < ay < %

Problem (70) and (71) is rather simple from the mathematical standpoint, and does
not require special methods for its solving. Thus, the dependence of the optimal length of
the actuator a, on the residual strain ¢, can be derived numerically. A surprising result is
obtained when we plot this dependence, sec Fig. 5. According to the numerical analysis, a
long actuator with the length equal to the length of the beam is optimal only for relatively
small residual strains, £,4 < 04 = 2.5. For ¢, > &4, the optimal length of the actuator
diminishes with an increase in ¢,, and tends to zero when ¢,, — co. Returning to the
dimensional variables, we find the following formula for the critical value of the strain:

2
o = 0,21 L ERT Edha)
EE hh,(h+h,)

For ¢, > ¢, the optimal length of the actuator is less than the beam length, and the
optimal length can be found by using the plot in Fig. 5.
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6. CONCLUSIONS

The paper is concerned with basic aspects of a new theory of intelligent composite
structures. We derive the governing equations, formulate the major optimization problems
in the theory of intelligent structures, and discuss similarities and discrepancies between the
theory of intelligent structures and the theory of optimal control.

The basic optimization problems are illustrated by three examples in which we emph-
asize three major sources of control for an intelligent composite structure with sensors and
actuators, namely, residual strains, material properties, and the geometry of the structure.

In the first, example, we derive an explicit expression for the optimal residual stress in
an actuator which provides the minimal deflection of a cantilevered beam under static
loading. It is shown that the actuator can reduce the maximal deflection by 28 times
compared with the same beam without active control. We analyze the robustness of the
obtained solution.

The second example is concerned with the optimal control of the foundation rigidity
in the problem of vibrations damping for a simply supported beam under dynamic loading.
We obtain an explicit expression for the optimal control as a piece-wise constant function
with two switch points which are determined numerically. It is shown that the only dimen-
sionless parameter of damping is the ratio of the maximal rigidity of the controllable
Winkler foundation to its minimal rigidity. The maximal deflection decreases with the
growth of this ratio and tends to its limiting value when the ratio becomes sufficiently
large. The ratio determines the ultimate efficiency of damping: by using the controllable
foundation we can reduce the maximal deflection by about 8 times.

The third example deals with the optimal design of an actuator for a two-layered,
controllable, simply supported beam. The objective of the control is to reduce the maximal
deflection by applying to the actuator a constant residual strain. It is shown that when this
strain is rather small, less than the determined critical value &2, the optimal length of the
actuator has to be maximal and equal to the length of the beam. However, for the strains,
which exceed this critical value, the optimal length of the actuator is smaller than the length
of the beam, and it diminishes up to zero with the growth of the applied strain.
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